POWER SYSTEMS-II

Course Code	19EE3701	Year	IV Semester		Ι	
Course Category	Program core	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE, PS-I	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Fotal Marks	100	

Cours	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Understand the per unit representation, importance of power flow studies and fault					
COI	studies					
CO2	CO2 Analyze power flows and different types of faults in a power system					
CO3	CO3 Investigate stability and load frequency control of power system					
CO4	CO4 Solve the economic dispatch problem with and without losses					

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02							PSO2				
CO1	3										1	
CO2	3	2									1	1
CO3	2			2		1					1	1
CO4	3	2									1	

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Per unit Representation and Power Flow Studies Single line diagram, per unit quantities, per unit impedance diagram of a power system, Y bus formation by direct inspection method. Necessity of power flow studies - Derivation of static load flow equations– Load flow solutions using Gauss Seidel Method, Newton Raphson method, Fast Decoupled methods - algorithm and flowchart, Comparison of Different methods of load flow, numerical Problems (max. 3-buses and one iteration only)	CO1 & CO2
II	Short Circuit Analysis Necessity of fault studies, Types of faults, symmetrical components - positive, negative and zero sequence components of voltage, current and impedance. Sequence Networks - LG, LL, LLG faults with and without fault impedance - numerical Problems	CO1 & CO2
III	Stability Analysis Concepts of steady state, dynamic and transient stabilities - transfer reactance, synchronizing power coefficient, power angle curve - determination of steady state stability and methods to improve steady state stability - Derivation of swing equation – Determination of transient stability by equal area criterion, application of equal area criterion to	CO3

	sudden change in mechanical input-derivation of critical clearing angle and critical clearing time - Methods to improve transient stability.				
IV	Load Frequency Control				
	Modeling of speed governing system, turbine model, generator and load model - Automatic generation control of a single area system, steady state analysis, dynamic response, PI control of single area system - two area system, tie-line bias control.	CO3			
V	Economic Operation of Power Systems				
	Optimal operation of generators in thermal power stations, heat rate curve, cost curve, incremental fuel and production costs - Derivation of coordination equation for economic dispatch problem with and without losses - numerical Problems	CO4			

Learning Resources
Text Books:
1. Modern power system analysis - D.P.Kothari and I.J.Nagrath - 4 th edition - TMH publications
 Power system analysis - HadiSaadat – 4th edition- TMH publications. Power Generation, Operation, and Control - Wood and Wollenberg- 3rd edition - Wiley Publishers
4. Electric Energy systems Theory - O.I.Elgerd, 2 nd edition - TMH Publishers

Reference Books:

1. Power System Analysis: Operation and Control - AbhijitChakrabarti, SunitaHalder – 3rd edition PHI Learning.

Power System Analysis and design - B.R.Gupta, - 4thEdition S.Chand Publishers.
 Electrical Power Systems - Ashfaq Husain - 7thedition - CBS Publishers & Distributors.